
XPRESS Project

PI: Ron Brightwell, Sandia National Laboratories

Executive	 Summary	

The XPRESS (eXascale PRogramming Environment and System Software)
Project is developing the software stack for 21st Century extreme scale
computing. It is sponsored by the DOE Office of Science ASCR X-Stack
Program, and is beginning its second year of intense research and development
combining the resources and talents of Sandia National Laboratories, Oak Ridge
National Laboratory, Indiana University, University of Oregon, Louisiana State
University, University of North Carolina-RENCI, Lawrence Berkeley National
Laboratory, and Oak Ridge National Laboratory. The XPRESS project is
forwarding the goals of this evolving exascale initiative through on-time
accomplishment of its principal milestones, new discoveries related to the
operation and structures of future dynamic adaptive software systems for DOE
mission-critical applications and leadership class execution platforms, and
demonstrating early prototypes of component layers that will comprise the
exascale computers of the next decade.

XPRESS is unique among the X-Stack projects in that it addresses 1) the full
software stack, 2) and is guided by a holistic parallel execution model for
efficiency and scalability. It is the only X-stack project that is developing a new
operating system expressly for this performance domain and the custom
interface (RIOS) between this lightweight kernel OS (LXK) and its co-designed
runtime system software (HPX). LXK is order constant scaling, eliminates OS
noise, and extends world-class research in lightweight kernel supervisors
including the commercially released Catamount OS. HPX-4 exploits early work
on the shared memory multi-threaded message-driven HPX-3 experimental
runtime system incorporating significant semantic advances and efficiency
mechanisms. One unique property of the XPRESS system is its innovation of
multi-nodal processes. Another is its introspective RCR black-boarding of system
state and its APEX application instrumentation and runtime control. An
experimental low-level programming model, XPI, is being provided for early
application-driven experimentation and evaluation. Another unique contribution of
the XPRESS research project is the enhancement and refinement of the ParalleX
execution model to guide the co-design of the system software component layers
and govern their interoperability.

Consistent with and governed by its program plan, XPRESS has had dramatic
success in advancing the state of the art towards the realization of effective and
comprehensive exascale system software stack. This complex collaboration of

half a dozen cooperating institutions has been organized with multiple PI
meetings, a number of technical focused topic meetings, and bi-weekly telecons.
Progress has been achieved with the experiment to interconnect a dynamic
runtime system, HPX-3, with a lightweight kernel OS, Kitten, to derive critical
experience with this breakthrough class of system software. This has contributed
to the early draft of the RIOS specification of an interface between the application
side and machine side software components. From the user side, the
specification of the new low-level parallel programming interface, XPI, has been
completed and is in review in preparation for formal release. This experimental
library will enable experimentation with advanced parallel algorithms towards a
new generation of scalable scientific applications. Software elements of the HPX-
4 runtime systems have been developed, tested, and evaluated including the
threads package, multiple forms of the parcels communication package, early
forms of global address spaces, and local control object synchronization. Parallel
distributed execution with proxy apps including GTC and LULESH as well as
AMR codes have been implemented and executed on multicore and multi-node
parallel systems, a key milestone for the XPRESS project and proof of concept.
The software architectures of the ephemeral APEX instrumentation and control
component as well as the persistent RCR black-boarding component have been
completed in initial form. A completely new version of the ParalleX Report (5.2)
has been released incorporating important refinement to this overarching
execution model. At the recommendation of ASCR leadership, the SLOW
performance model has been extended to incorporate parameter associated with
energy and reliability to form the new SLOWER model. As planned, the
applications-focused research work under the leadership of Mike Heroux has just
been initiated. The XPRESS project collaborates, contributes to, and benefits
from the collaboration with a number of other research projects within DOE and
other agencies including NSF, DOD, and NSA. Finally, a recent unintentioned
discovery is the property of emergent behavior through the synthesis of the LXK
operating system and the HPX runtime system to establish a symbiotic system-
wide protected supervisor for total system resource management and
coordination. This new derived layer, PRIDE (Parallel Resource Integration for
Distribute Execution), is a natural consequence of the runtime and OS
capabilities and integration, and will require a minimum amount of additional
coding. (This new direction, although promising, is not funded and has not been
included in the current project plan.)

Immediate future work is proceeding aggressively under the project plan and
Sandia’s direction. Most critically are the software integration of the
subcomponents of the runtime system to implement the HPX-4 runtime system
software and the further interface of this with the LXK node operating system to
achieve a first realization of the XPRESS software stack. The XPI programming
library is under development with first implementation to be deployed within two
months. More Co-design Center proxy apps will be developed for XPRESS

including Boxlib AMR and Neckbone, among others. The Portals 4 networking
layer will be integrated with LXK and providing services to HPX. In cooperation
with the ASCR Execution Models projects, two different formal specifications of
ParalleX will be developed using both operational semantics and an abstract
state machine (ASM) formalism. The introspection layer comprising the
integration of APEX and RCR will be implemented for dynamic control. Together,
these activities and anticipated accomplishments will prepare XPRESS for its
series of in-depth experiments and evaluation compliant with the project planned
milestones.

Year	 2	 Progress	

HPX-‐3	
LSU has continued to update, develop, and improve HPX. Several key
enhancements have been added including support for the BlueGene/Q and Xeon
Phi, object migration, and refactoring of the threading sub-system and parcel
port. LSU has implemented the basic framework for object migration that allows
users to utilize this tool in their code. This concept will become more centerpiece
as we begin to incorporate runtime information into HPX’s decision-making
processes. The threading system in HPX-3 has been overhauled and cleaned up
significantly to improve overall performance of the threading and scheduling
subsystem, and to improve the extensibility and maintainability of the code base
to simplify adding new schedulers while being able to reuse large parts of the
existing code base. The parcel port has been refactored so that users can easily
target the communication layer of their choice. These changes are greatly
improving the portability and efficiency of the HPX code.

LSU is also developing a proof-of-concept implementation of XPI on top of HPX-
3. This implementation, HPXPI, is nearing an initial release. This release will
allow the XPRESS team to write and test code utilizing the XPI interface.

HPX-‐4	
The XPRESS team has defined the major components of the HPX-4 runtime
system as well as the interfaces between major system components. There are
working implementations of the parcel handling, LCOs, and networking
components. IU is actively working with LSU and UO/RENCI to integrate the
threads and performance components, respectively. Although the global address
space component has yet to be defined, there are several successful distributed
runs with the HPX-4 runtime on up to 512 cores with a port of the LULESH
application.

The parcel handler in HPX-4 is capable of triggering futures on a remote node as
well as performing large message transfers between nodes. The LCO
component has implemented futures and gates (which are being used by the

LULESH port), and IU is currently working on defining the semantics for dataflow
LCOs. IU and LSU have come to an agreement that the interface between the
threads package and LCOs is sufficient to handle expected use cases. In
addition, the networking in HPX-4 is currently supported by Photon (an IU
project). IU is actively working towards supporting Portals 4, particularly for its
RDMA capabilities.

XPI	
The XPI specification developed by IU has reached Beta status. It contains a
large number of changes from its initial version six months ago. In particular, 1)
an interface for attaching parcels to processes was determined necessary to fully
interface with termination detection, 2) an interface for testing to see if a parcel’s
wait queue is empty has been added to streamline synchronization, and 3) an
interface to allocate and inspect process global data has been added. In addition,
a number of small changes and bug fixes have been included in the C-interface
specification as we gain experience writing algorithms with XPI. Finally, a number
of small examples have been included directly in the document, and some larger
examples have been developed externally. The beta specification is being
implemented concurrently by IU and LSU with expected initial, feature releases
this spring. When these releases become available, the XPI specification will
move out of beta and become XPI version 1.

APEX	
The University of Oregon (UO) has begun work on creating a new performance
data API for evaluating metrics mapped from low-level measurements during
execution to allow for performance data introspection. In order for APEX to
observe the performance state of an XPRESS application running in the OpenX
stack, each layer of the stack requires access to the APEX component. That
access will be provided through an application programming interface (API) for
other components to both register events with the APEX component, as well as
request notification when performance conditions are such that intervention is
necessary. The intervention will be managed by an APEX subcomponent called
the Policy Engine. Modeled after the initial integration with HPX-3, a more
expansive APEX API has been drafted, and is currently under review with the
other members of the XPRESS team. In addition, we are working to help define
the API between APEX and the RCRBlackboard, in order to provide introspection
into the hardware and operating system layers. RCR is critical to providing the full
system view, and APEX will provide the conduit for higher layers of the software
stack – including the application layer – to the operating and runtime system
state.

Second, we have begun refactoring the initial APEX prototype, in order to align
with the requirements of the Policy Engine and to target HPX-4. Previously, the
APEX component served as a proxy for TAU profile collection, but as the

requirements for APEX have evolved so has its prototype implementation. APEX
has been redesigned to function in two modes: primarily as an event-driven
architecture with a secondary periodic interrogation component. At initialization,
listener components register with APEX to be notified when events happen in the
system. The TAU integration has been refactored to be one such component,
and can be optionally disabled at either configuration time or at runtime. When
appropriate, each HPX thread reports its change in state to APEX. When an
event occurs, each of the registered listeners is notified of the event through the
registered callbacks. Optionally, components can periodically interrogate the
runtime state and perform whatever analysis they require. In addition to the TAU
profile collection component, a concurrency component has also been prototyped
using both the event-driven architecture and the periodic interrogation. As
described in previous reports, APEX has reverse engineered the Intel
Instrumentation and Tracing Technology (ITT) API, because the HPX-3 thread
scheduler has already been instrumented with ITT API calls. The thread
scheduler in HPX-3 is using the ITT interface to report when tasks are scheduled
on operating system threads. The concurrency listener keeps track of the current
task for each thread of execution. In addition, the concurrency component
periodically interrogates the task state for the threads, and generates a timeline
activity graph showing how many threads are active during each period. Figure 1
shows some sample output from the concurrency component. The timeline
shows how many threads were executing and in which functions during each
sampled event. Figure 2 shows the TAU profile collected during the same
execution.

 0

 5

 10

 15

 20

 25

 30

C
o
n
cu

rr
e
n
cy

Time

hpx::actions::result_action3
hpx::actions::action1

call_here_action
io-thread

main-thread
octopus_octree_server_apply_action

octopus_octree_server_child_to_parent_state_injection_action
octopus_octree_server_receive_child_flux_action

octopus_octree_server_receive_child_state_action
octopus_octree_server_receive_ghost_zone_action

octopus_octree_server_save_action
octopus_octree_server_step_recurse_action

parcel-thread-tcp
task_base::apply

timer-thread
other

	
	

Figure	 1:	 Sampled	 state	 of	 HPX	 threads,	 as	 provided	 through	 APEX	 introspection.	 The	 HPX	 Thread	
Scheduler	 reports	 state	 changes	 to	 APEX	 through	 callbacks,	 and	 APEX	 periodically	 (10	 times	 per	 second)	
interrogates	 the	 thread	 state.	 Dips	 in	 concurrency	 occur	 during	 program	 output	 and	 checkpointing	 at	
major	 iteration	 boundaries.	 The	 application	 is	 Octopus,	 running	 on	 a	 12-‐core	 Intel	 Xeon	 X5650	 2.67GHz	

system	 with	 24	 hardware	 threads.	
	

	
Figure	 2:	 Profile	 of	 Octopus	 running	 on	 a	 12-‐core	 Intel	 Xeon	 X5650	 2.67GHz	 system	 with	 24	 HPX	 worker	

threads.	
	
Third, we have started defining the performance introspection requirements and
architecture. As part of this process, we have started design for the Policy Engine
subcomponent. In the proposed design, various components and layers in
XSTACK will register policy criteria functions with the Engine. The Policy Engine
will be designed as an event listener within APEX, utilizing both the event-driven
architecture as well as periodic interrogation. When a policy criteria function
evaluates to true (either after an event or during periodic interrogation), a policy
action will be taken by APEX, in the form of a callback routine to the component
that registered the policy criteria function. In this design, the Policy Engine will be
central piece of the introspection puzzle, providing runtime adaptability to the full
XSTACK application.

Integration/Introspection	 	
The XPRESS project has a unique opportunity to re-implement the HPC software
stack from the application to the OS. Using co-design principles, Xpress is
binding previously disjoint parts of the software stack to improve usability and
performance. Careful interface design allows the individual layers to be
implemented separately, while allowing greater information flow. This information
flow allows HPX and LXK to be active participates in an application execution.

Using dynamic performance measures gathered by the hardware, within the OS
and Runtime, or by the application itself, RENCI and University of Oregon are
developing introspective methods to improve application and system
performance. This is done by detecting and reacting to performance problems
during execution. Tight integration of the performance tools in HPX and LXK,
gives us the ability to impact scheduling decisions at several levels. By reacting
to performance bottlenecks in the schedulers, overall system and application
performance can be improved.

During a project meeting on interfaces, the fundamental difference between the
performance tools, APEX and RCR, was recognized. APEX as a first-person tool
is ephemeral and should only live during an application execution. If multiple
applications are executing, multiple APEXs exist. RCR as a third-person tool
should be long-lived and only one per node is ever active. This recognition
facilitated a change in how we think about performance tools and introspection.
Rather than being optional tools that are only used when desired, they are
integrated parts of HPX and LXK. One result of this is that communication
between APEX and RCR is now considered part of the RIOS interface between
the runtime and the OS.

UNC/RENCI’s focus has been on creating a RCR module that can be added to
the OS with minimal impact on the source code base or the execution overheads.
This work requires that potions of the RCR framework be made more robust to
allow execution by the OS. Placing APEX within HPX has interface implications
to UNC/RENCI. The policy engine that uses an energy model to identify
introspection opportunities is now within APEX. The interface to RCRblackboard
is now part of RIOS and the interface to the HPX thread scheduler is to APEX not
RCR directly. This changes some of the technical details of what UNC/RENCI is
doing, but should improve overall programmability and performance.
	
The integration of APEX and RCR is progressing. UNC/RENCI has delivered an
updated version of RCR that can run as a standalone daemon on UO systems for
testing. The current RCR focuses on bottlenecks associated with memory and
identify memory contention on a couple of different architectures. RCR integration
with LXK has started and UNC/RENCI is talking to Sandia about the best way to
combine the two. RCR can go into LXK or live as a semi-independent module
between LXK and the RIOS interface. We expect that decision to be made in the
next month. UNC/RENCI is coming up to speed on RIOS, to understand how to
best add the APEX/RCR interactions to overall framework.
	
UNC/RENCI’s goals for the remainder of year 2 focus on integration. 1)
Determining RCR’s exact role with LXK (semi-independent module or embedded
component) and providing robust code to create the RCRblackboard within LXK
(2) Defining the RIOS extensions for APEX to use RCR information both in the
performance tuning modules and its policy engine (3) Add a new thread

scheduler to HPX-3 that uses APEX’s policy engine (implementation designed to
move easily to HPX-4).

LXK	
There are three main deliverables for LXK this year. The first deliverable is to
deploy an LXK virtual cluster environment that allows for system software
development and testing using virtual machines rather than native hardware. The
LXK virtual cluster environment has been prototyped and allows several LXK
instances running in separate virtual machines to communicate with one another
using the Portals 4.0 network API. The motivation for developing the virtual
cluster environment was to provide XPRESS collaborators with a more controlled
and productive environment for LXK/HPX development compared to running on
the native hardware at each site, which is difficult to support due to its diversity.
The intended usage model is for a developer to boot several LXK virtual
machines in their development workstation to do LXK/HPX development and
functional correctness testing. We have not deployed the LXK virtual cluster
environment to any collaborator sites yet, but expect to do so in the second half
of the year after additional integration work is complete.

The second deliverable is integration of instrumentation capability into LXK.
RENCI and Sandia have discussed a plan for integrating RCRtool functionality in
the LXK kernel. Currently RCRtool has a user-level daemon that continuously
makes system calls to read performance counter hardware registers, which
requires OS kernel privilege. Our plan is to re-architect this for LXK such that the
LXK kernel does this polling autonomously driven by a kernel-level periodic timer,
thus eliminating the system call overhead. LXK will write the performance
counter data to a shared memory region that will in turn be mapped into user-
level process address spaces. The RIOS layer will provide an interface for
controlling the LXK's RCRtool functionality.

The third deliverable is a demonstration of HPX4 running on LXK. Work towards
this deliverable within LXK has not started yet, but we expect to be able to
complete it by the end of the year. This activity is dependent on progress on
HPX-4, which is now sufficient to begin work on the LXK side.

Applications	
Application work at Indiana University is proceeding on one proxy application
from each of the DOE Co-design centers as well as two other proxy applications
led by XPRESS applications team leaders, Mike Heroux and Alice Koniges.
Efforts to port the LULESH proxy application (ExMatEx co-design center),
NEKBONE (CESAR co-design center), and Exp_CNS_NoSpec (ExaCT co-
design center) are currently underway. The LULESH port is now complete and
undergoing performance optimization. The GTC particle-in-cell proxy application
(NERSC benchmark, PPPL) has already been ported to HPX-3 with results

published at SC13 while a port to XPI is currently underway. The HPCG proxy
application (http://tiny.cc/hpcg) is currently being ported to XPI by the
recommendation from Mike Heroux. Additional application work on the Fast
Multipole Method for XPI is being conducted for possible use in particle-in-cell
proxy applications as recommended by Alice Koniges. Tom Evans at ORNL is
working on SPN “Simplified Spherical Harmonics”, which is a mini-app for
spherical harmonic capabilities in Denovo. This mini-app is ready to use. A
second Monte Carlo transport mini-app is still in development.

Legacy	 Application	 Support	
Legacy application migration work at University of Houston has completed an
initial implementation of the OpenMP programming model on top of HPX-3,
named hpxMP. Collaboratively developed with LSU, the hpxMP runtime re-
targets the current OpenMP runtime in the OpenUH compiler to the HPX-3
runtime. It supports OpenMP 3.1 features, including parallel region, parallel
worksharing, tasking and most synchronization directives and miscellaneous
utilities. The implementation has been evaluated using OpenMP validation suites,
EPCC OpenMP micro-benchmarks, and NAS parallel benchmarks. We have
observed comparable or better performance of the hpxMP to the pthread-version
of OpenMP and the Intel OpenMP implementation. Our next step is to perform
qualitative studies of performance differences and also to work with LBNL and
Sandia to evaluate hpxMP using larger applications recommended by Alice
Koniges and Michael Heroux. We will also retarget the hpxMP to the XPI
interface when the implementation becomes available.

Researchers at UH have also explored the mechanisms of asynchronous tasking
and data-drive computation model across nodes, leveraging MPI+X programming
model and the similar work done for the intra-node model. The initial design of
extending OpenMP to support overlapping computation and communication in
hybrid MPI+OpenMP model is completed, and the implementation is ongoing
with plan to be completed around September 2014. With involvement of most
industry vendors and national labs, we believe the efforts and results will have
profound impacts to the ways we develop large-scale applications.

Miscellaneous	 Activities	 and	 Accomplishments	
Representatives from both Sandia and the University of Houston have
participated in the OpenMP committee, with Yonghong Yan of UH leading the
Interoperability Subcommittee and Stephen Olivier of Sandia leading the Tasking
Subcommittee. At the 2013 International Workshop on OpenMP, UH published
papers on the OpenMP accelerator model, task dependences, and task profiling.
Sandia published a paper on task-generating loops, as well as contributing new
material to the OpenMP examples document.

Stephen Olivier of Sandia and Allan Porterfield of RENCI have had a paper
accepted at the upcoming 2014 High Performance Power-Aware Computing (HP-
PAC) that includes an extension of the work of their HP-PAC 2013 paper on
node-level energy-saving dynamic adaptive concurrency to multi-node
executions.

